Adipose Tissue Homogenizer & Homogenization Protocol

Ideal for Adipose Tissue Homogenization

Do you spend lots of time and effort homogenizing adipose tissue samples? The Bullet Blender® tissue homogenizer delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability. See below for a adipose tissue homogenization protocol.

Save Time, Effort and Get Superior Results with

The Bullet Blender Homogenizer

Consistent and High Yield Results

Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.

No Cross Contamination

No part of the Bullet Blender ever touches the tissue – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.

Samples Stay Cool

The Bullet Blenders’ innovative and elegant design provides convective cooling of the samples, so they do not heat up more than several degrees. In fact, our Gold+ models hold the sample temperature to about 4ºC.

Easy and Convenient to Use

Just place beads and buffer along with your tissue sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.

Risk Free Purchase

Thousands of peer-reviewed journal articles attest to the consistency and quality of the Bullet Blender homogenizer. We offer a 2 year warranty, extendable to 4 years, because our Bullet Blenders are reliable and last for many years.  

Adipose Tissue Homogenization Protocol

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small adipose tissue samples
5mL tube model (100mg - 1g) Medium adipose tissue samples
50mL tube model (100mg - 3.5g) Large adipose tissue samples

What Else Can You Homogenize? Tough or Soft, No Problem! 

The Bullet Blender can process a wide range of samples including organ tissue, cell culture, plant tissue, and small organisms. You can homogenize samples as tough as mouse femur or for gentle applications such as tissue dissociation or organelle isolation.

the Bullet Blender high-throughput tissue homogenizer

Adipose tissue pieces (on beads in upper photo) are completely homogenized into the buffer (slightly darker or discolored in lower photo).

Want more guidance? Need a quote? Contact us:



    Bullet Blender Models

    Select Publications using the Bullet Blender to Homogenize Adipose Tissue

    Albury-Warren, T. M., Pandey, V., Spinel, L. P., Masternak, M., & Altomare, D. A. (2015). Prediabetes linked to excess glucagon in transgenic mice with pancreatic active AKT1. Journal of Endocrinology, JOE-15-0288. https://doi.org/10.1530/JOE-15-0288
    Neve, E. P. A., Köfeler, H., Hendriks, D. F. G., Nordling, Å., Gogvadze, V., Mkrtchian, S., Näslund, E., & Ingelman-Sundberg, M. (2015). Expression and Function of mARC: Roles in Lipogenesis and Metabolic Activation of Ximelagatran. PLOS ONE, 10(9), e0138487. https://doi.org/10.1371/journal.pone.0138487
    Keung, E. Z., Akdemir, K. C., Al Sannaa, G. A., Garnett, J., Lev, D., Torres, K. E., Lazar, A. J., Rai, K., & Chin, L. (2015). Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma. Journal of Clinical Investigation, 125(8), 2965–2978. https://doi.org/10.1172/JCI77976
    Dordevic, A., Pendergast, F., Morgan, H., Villas-Boas, S., Caldow, M., Larsen, A., Sinclair, A., & Cameron-Smith, D. (2015). Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults. Nutrients, 7(7), 5347–5361. https://doi.org/10.3390/nu7075224
    Liu, L., Zou, P., Zheng, L., Linarelli, L. E., Amarell, S., Passaro, A., Liu, D., & Cheng, Z. (2015). Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death and Disease, 6(1), e1586. https://doi.org/10.1038/cddis.2014.553
    White, P. J., Mitchell, P. L., Schwab, M., Trottier, J., Kang, J. X., Barbier, O., & Marette, A. (2015). Transgenic ω-3 PUFA enrichment alters morphology and gene expression profile in adipose tissue of obese mice: Potential role for protectins. Metabolism, 64(6), 666–676. https://doi.org/10.1016/j.metabol.2015.01.017
    Fukunaga, T., Zou, W., Rohatgi, N., Colca, J. R., & Teitelbaum, S. L. (2015). An Insulin-Sensitizing Thiazolidinedione, Which Minimally Activates PPARγ, Does Not Cause Bone Loss: EFFECT OF AN INSULIN-SENSITIZING TZD ON BONE LOSS. Journal of Bone and Mineral Research, 30(3), 481–488. https://doi.org/10.1002/jbmr.2364
    Do, A., Menon, V., Zhi, X., Gesing, A., Wiesenborn, D., Spong, A., Sun, L., Bartke, A., & Masternak, M. M. (2015). Thyroxine modifies the effects of growth hormone in Ames dwarf mice. Aging (Albany, NY), 7(4), 241–255. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429089/
    Kahraman, S., Dirice, E., De Jesus, D. F., Hu, J., & Kulkarni, R. N. (2014). Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring. AJP: Endocrinology and Metabolism, 307(10), E906–E918. https://doi.org/10.1152/ajpendo.00210.2014
    Sutton, A. K., Pei, H., Burnett, K. H., Myers, M. G., Rhodes, C. J., & Olson, D. P. (2014). Control of Food Intake and Energy Expenditure by Nos1 Neurons of the Paraventricular Hypothalamus. Journal of Neuroscience, 34(46), 15306–15318. https://doi.org/10.1523/JNEUROSCI.0226-14.2014
    Goetzman, E. S., Alcorn, J. F., Bharathi, S. S., Uppala, R., McHugh, K. J., Kosmider, B., Chen, R., Zuo, Y. Y., Beck, M. E., McKinney, R. W., Skilling, H., Suhrie, K. R., Karunanidhi, A., Yeasted, R., Otsubo, C., Ellis, B., Tyurina, Y. Y., Kagan, V. E., Mallampalli, R. K., & Vockley, J. (2014). Long-chain Acyl-CoA Dehydrogenase Deficiency as a Cause of Pulmonary Surfactant Dysfunction. Journal of Biological Chemistry, 289(15), 10668–10679. https://doi.org/10.1074/jbc.M113.540260
    Hindle, A. G., & Martin, S. L. (2014). Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. AJP: Endocrinology and Metabolism, 306(3), E284–E299. https://doi.org/10.1152/ajpendo.00431.2013
    Menon, V., Zhi, X., Hossain, T., Bartke, A., Spong, A., Gesing, A., & Masternak, M. M. (2014). The contribution of visceral fat to improved insulin signaling in Ames dwarf mice. Aging Cell, 13(3), 497–506. https://doi.org/10.1111/acel.12201
    Bajpai, G., Simmen, R. C. M., & Stenken, J. A. (2014). In vivo microdialysis sampling of adipokines CCL2, IL-6, and leptin in the mammary fat pad of adult female rats. Mol. BioSyst., 10(4), 806–812. https://doi.org/10.1039/C3MB70308H
    Melero, M., García-Párraga, D., Corpa, J., Ortega, J., Rubio-Guerri, C., Crespo, J., Rivera-Arroyo, B., & Sánchez-Vizcaíno, J. (2014). First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (Odobenus rosmarus divergens). BMC Veterinary Research, 10(1), 968. https://doi.org/10.1186/s12917-014-0308-2
    Vaughan, C. H., Zarebidaki, E., Ehlen, J. C., & Bartness, T. J. (2014). Analysis and Measurement of the Sympathetic and Sensory Innervation of White and Brown Adipose Tissue. In Methods in Enzymology (Vol. 537, pp. 199–225). Elsevier. http://linkinghub.elsevier.com/retrieve/pii/B9780124116191000112
    Cheng, X., Guo, S., Liu, Y., Chu, H., Hakimi, P., Berger, N. A., Hanson, R. W., & Kao, H.-Y. (2013). Ablation of Promyelocytic Leukemia Protein (PML) Re-patterns Energy Balance and Protects Mice from Obesity Induced by a Western Diet. Journal of Biological Chemistry, 288(41), 29746–29759. https://doi.org/10.1074/jbc.M113.487595
    Lee, T.-W. A., Kwon, H., Zong, H., Yamada, E., Vatish, M., Pessin, J. E., & Bastie, C. C. (2013). Fyn Deficiency Promotes a Preferential Increase in Subcutaneous Adipose Tissue Mass and Decreased Visceral Adipose Tissue Inflammation. Diabetes, 62(5), 1537–1546. https://doi.org/10.2337/db12-0920
    Liu, B.-H., Lin, Y.-Y., Wang, Y.-C., Huang, C.-W., Chen, C.-C., Wu, S.-C., Mersmann, H. J., Cheng, W. T. K., & Ding, S.-T. (2013). Porcine Adiponectin Receptor 1 Transgene Resists High-fat/Sucrose Diet-Induced Weight Gain, Hepatosteatosis and Insulin Resistance in Mice. Experimental Animals, 62(4), 347–360. https://doi.org/10.1538/expanim.62.347
    Chaker, B., Samra, T. A., Datta, N. S., & Abou-Samra, A. B. (2013). Altered Responses to Cold Environment in Urocortin 1 and Corticotropin-Releasing Factor Deficient Mice. Physiology Journal, 2013, 1–7. https://doi.org/10.1155/2013/185767
    Kumar, M., Roe, K., Nerurkar, P. V., Namekar, M., Orillo, B., Verma, S., & Nerurkar, V. R. (2012). Impaired Virus Clearance, Compromised Immune Response and Increased Mortality in Type 2 Diabetic Mice Infected with West Nile Virus. PLoS ONE, 7(8), e44682. https://doi.org/10.1371/journal.pone.0044682
    Bastie, C. C., Gaffney-Stomberg, E., Lee, T.-W. A., Dhima, E., Pessin, J. E., & Augenlicht, L. H. (2012). Dietary Cholecalciferol and Calcium Levels in a Western-Style Defined Rodent Diet Alter Energy Metabolism and Inflammatory Responses in Mice. Journal of Nutrition, 142(5), 859–865. https://doi.org/10.3945/jn.111.149914
    Carlstrom, M., Larsen, F. J., Nystrom, T., Hezel, M., Borniquel, S., Weitzberg, E., & Lundberg, J. O. (2010). Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proceedings of the National Academy of Sciences, 107(41), 17716–17720. https://doi.org/10.1073/pnas.1008872107

    Have any questions? Ask us!

    Success!

    The discount has been applied. You will see it when you checkout.

    There has been a problem

    Unfortunately this discount cannot be applied to your cart.